Ми у соц. мережах:
Вконтакте Facebook Twitter

Застосування математичних моделей для голосової ідентифікації суб’єктів у сфері фінансової безпеки

Є.Ю. Щербаков

У статті проведено дослідження з вибору найефективніших математичних методів та оптимальних комбінацій параметрів попередньої обробки даних у вирішенні завдань біометричної ідентифікації. Досліджено етапи підготовки даних, поданих у вигляді часових рядів, для завдань розпізнавання образів. Встановлено ознаки потоку даних, які можуть бути використані як вхідні параметри для побудови моделі класифікації. Проведено порівняльний аналіз точності моделей класифікації, побудованих з використанням штучних нейронних мереж, комітетів дерев прийняття рішень та алгоритму опорних векторів, а також порівняння показників витрат комп’ютерного часу на побудову таких моделей. Для зменшення витрат часу для пошуку гіперпараметрів запропоновано застосовувати двоетапний підхід зі скороченням розміру навчальної вибірки та залученням спрощених математичних методів на попередньому етапі пошуку. Проведена експериментальна перевірка підтвердила доцільність застосування такого підходу в процесі оптимізації параметрів підготовки даних і конфігурації нейронної мережі та засвідчила його ефективність з точки зору витрат комп’ютерного часу. Висновки з проведеного дослідження та побудовані моделі можуть бути використані банківськими структурами та іншими установами, зацікавленими в біометричній ідентифікації особи за голосом.

Ключові слова. Біометрична ідентифікація, нейромережа, комітети дерев прийняття рішень, оптимізація гіперпараметрів, витрати процесорного часу.

DOI 10.33111/nfmte.2017.158


Creative Commons Attribution-NonCommercial 4.0 International License

Завантажити статтю