Ми у соц. мережах:
Вконтакте Facebook Twitter

Вибір оптимальної топології нейронної мережі в задачах класифікації динамічних економічних систем

І.І. Стрельченко

Стаття висвітлює головні ускладнення в процесі побудови та застосування нейронних мереж, які пов’язані, перш за все, з підбором оптимальної внутрішньої структури, а для мереж типу карти Кохонена – кількості нейронів у прихованому шарі. Показано, що процес оптимізації нейронних мереж полягає в ітераційному знаходженні деяких параметрів, що забезпечують екстремум функції якості, яка, як правило, не має властивості неперервності та гладкості. Тому істотним недоліком такого підходу є неможливість забезпечення гарантій оптимальності застосовуваних методів і алгоритмів. Відповідно, у статті розроблено покроковий алгоритм конструювання карт Кохонена, призначених для вирішення задачі класифікації динамічних економічних систем відповідно до обраного критерію. У роботі вперше запропоновано використання рангового коефіцієнта конкордації в якості критерію оптимальності для побудови нейронної мережі-класифікатора, який характеризує ступінь узгодженості у наборі вхідних змінних. Експериментально протестовано покроковий алгоритм побудови карти Кохонена, котра має оптимальну топологію за обраним критерієм і розбиває вихідну вибірку на шість груп. Відповідно до значень коефіцієнта конкордації реакція ключових макроекономічних індикаторів усередині отриманих кластерів характеризується високим рівнем подібності.

Ключові слова. Динамічна економічна система, фінансова криза, макроекономічний індикатор, класифікація, ранговий коефіцієнт конкордації, нейронна мережа, карта Кохонена.

DOI 10.33111/nfmte.2017.142


Creative Commons Attribution-NonCommercial 4.0 International License

Завантажити статтю